Iron catalysts can modify amino acids, peptides to create new drug candidates

Iron catalysts can modify amino acids, peptides to create new drug candidates:

For medicinal chemists, making tweaks to peptide structures is key to developing new drug candidates. Now, researchers have demonstrated that two iron-containing small-molecule catalysts can help turn certain types of amino acids – the building blocks of peptides and proteins – into an array of potential new forms, even when part of a larger peptide, while preserving a crucial aspect of their chemistry: chirality, or “handedness.”

Led by Illinois chemistry professor M. Christina White, researchers from the University of Illinois at Urbana-Champaign in collaboration with researchers at Pfizer Global Research and Development detailed the new reactivity of the catalysts in the journal Nature.

“This allows us to take one amino acid structure and convert it into many different structures that represent different functionalities, which could ultimately lead to different biological and physical properties of the peptide,” White said. “It also expands the pool of unnatural chiral amino acids that are available to researchers to make new structures.”

A main advantage to the catalysts, which oxidize bonds between carbon and hydrogen, is that they preserve the amino acid’s sense of chirality. Chiral molecules can have more than one spatial arrangement of their atoms, or stereochemistry, sometimes known as “right-hand” and “left-hand” versions. Although they share the same chemical formula, molecules of opposite handedness can behave very differently in the body. For example, L-DOPA is a drug used to treat Parkinson’s disease, whereas its mirror version, D-DOPA, is biologically inactive.

“That’s why having things with defined stereochemistry can be very important for drug discovery,” White said. “It can be that a molecule of one handedness has fantastic physiological properties, but the same molecule with the opposite handedness could have very detrimental properties.”

Using the two iron catalysts, the researchers were able to take four chiral amino acids – proline, leucine, valine and norvaline – and diversify them into 21 different amino acid structures while preserving their handedness. The new structures can be used to create modified versions of existing peptides or to build entirely new structures.

Such oxidative amino acid modification is performed routinely in nature to make a variety of different peptides with different properties. Twenty common amino acids exist in nature, but are altered by carbon-hydrogen oxidation reactions to change their shape or add functional groups such as alcohols or carboxylic acids. These reactions are typically catalyzed by iron-containing enzymes. However, the enzymes are very difficult to work with in a laboratory setting, White said.

“These enzymes are also very specific. They are usually tailored to one amino acid or one peptide structure,” White said. “Two big advantages to the small-molecule catalysts we’ve developed are that they are very general – they can work on many different amino acid and peptide structures – and they are very easy to use. They can create great diversity initiated by one simple carbon-hydrogen oxidation reaction.”

Another major advantage the catalysts have is that, while they are general in what substrate they can oxidize, they are very specific about which carbon-hydrogen bonds they cut – so much so that they target a certain spot on amino acids like proline, leucine or valine even when they are part of a much larger peptide chain. For example, the researchers used the catalysts to transform a single proline-containing peptide chain into eight different peptides containing unnatural amino acids.

This is powerful because right now, if you want to make those eight different peptides, you would have to do eight different syntheses,” White said. “And before you could do that, you’d have to synthesize the individual unnatural amino acid components. With our method, you can build one peptide out of bulk chemicals and use one carbon-hydrogen oxidation reaction, coupled with a reaction to add a functional group, to produce eight new peptides all with retained handedness.”

One of the small-molecule iron catalysts, iron PDP, is available commercially from Sigma-Aldrich and Strem, and the researchers are in talks to make the second catalyst available as well.

White’s group is working on catalysts that can modify a wider range of amino acids, particularly those with electron-rich aromatic functionality, which compete with the carbon-hydrogen bonds for oxidation using the current catalyst.

Syndicated from Mind Blowing Science! Continue reading Iron catalysts can modify amino acids, peptides to create new drug candidates

Stanford chemists craft catalyst for making biodegradable plastics

Stanford chemists craft catalyst for making biodegradable plastics:

The development of petroleum-based plastics is one of the crowning achievements of the 20th century, but they come with a hefty cost.

Yes, they’re inexpensive and feature extraordinary mechanical properties that have made them the materials of everyday life.

However, the vast scale of plastics manufacturing and the environmental consequences associated with disposal have illuminated the limits to which the planet can cope with our current “take, make and dispose” model of resource utilization. Biodegradable plastics derived from renewable sources offer an attractive alternative, but so far they can’t match the price and performance of petroleum plastics.

Now, researchers at Stanford and IBM Research report the development of new chemical approaches that could efficiently and inexpensively generate biodegradable plastics suitable for making an array of items as diverse as forks, medical devices and fabrics. The study is published in the current issue of Nature Chemistry.

Continue Reading.

Syndicated from Mind Blowing Science! Continue reading Stanford chemists craft catalyst for making biodegradable plastics

Cheap catalyst coaxes hydrogen from the lawn

Cheap catalyst coaxes hydrogen from the lawn:

Scientists have shown how sunlight and a cheap catalyst can unlock significant amounts of hydrogen from fescue grass.

The method, now demonstrated for the first time, could potentially lead to a sustainable way of producing hydrogen, which has enormous potential in the renewable energy industry due to its high energy content and the fact that it does not release toxic or greenhouse gases when it is burned.

“This really is a green source of energy,” says coauthor Michael Bowker, a professor at the Cardiff Catalysis Institute. “Hydrogen is seen as an important future energy carrier as the world moves from fossil fuels to renewable feedstocks, and our research has shown that even garden grass could be a good way of getting hold of it.”

Continue Reading.

Syndicated from Mind Blowing Science! Continue reading Cheap catalyst coaxes hydrogen from the lawn

Scientists just turned plastic bottles and bags into liquid fuel

Scientists just turned plastic bottles and bags into liquid fuel:

Scientists have come up with a new way to turn plastic waste into liquid fuel. It uses less energy than previous methods, and produces a higher quality end product.

Syndicated from Mind Blowing Science! Continue reading Scientists just turned plastic bottles and bags into liquid fuel