Researchers have observed individual atoms interacting for the first time

Researchers have observed individual atoms interacting for the first time:

For the first time, researchers have managed to capture images of individual potassium atoms distributed on an optical lattice, providing them with a unique opportunity to see how they interact with one another.

While capturing these images is a feat in itself, the technique could help researchers to better understand the conditions needed for individual atoms to come together and form exotic states of matter like superfluids and superconductors.

“Learning from this atomic model, we can understand what’s really going on in these superconductors, and what one should do to make higher-temperature superconductors, approaching hopefully room temperature,” team member Martin Zwierlein from MIT said in a statement.

To capture the images, the team took potassium gas, and cooled it only a few nanokelvins – just above absolute zero. To put that into perspective, 1 nanokelvin is -273 degrees Celsius (-460 degrees Fahrenheit).

At this extremely cold temperature, the potassium atoms slow to a crawl, which allowed the team to trap some of them inside a two-dimensional optical lattice – a complex series of overlapping lasers that can trap individual atoms inside different intensity waves.

Continue Reading.

Syndicated from Mind Blowing Science!

Read more

Researchers prototype system for reading closed books

Researchers prototype system for reading closed books:

MIT researchers and their colleagues are designing an imaging system that can read closed books.

In the latest issue of Nature Communications, the researchers describe a prototype of the system, which they tested on a stack of papers, each with one letter printed on it. The system was able to correctly identify the letters on the top nine sheets.

“The Metropolitan Museum in New York showed a lot of interest in this, because they want to, for example, look into some antique books that they don’t even want to touch,” says Barmak Heshmat, a research scientist at the MIT Media Lab and corresponding author on the new paper. He adds that the system could be used to analyze any materials organized in thin layers, such as coatings on machine parts or pharmaceuticals.

Continue Reading.

Syndicated from Mind Blowing Science!

Read more

Breakthrough in materials science: Research team can bond metals with nearly all surfaces

Breakthrough in materials science: Research team can bond metals with nearly all surfaces:

How metals can be used depends particularly on the characteristics of their surfaces. A research team at Kiel University has discovered how they can change the surface properties without affecting the mechanical stability of the metals or changing the metal characteristics themselves. This fundamentally new method is based on using an electrochemical etching process, in which the uppermost layer of a metal is roughened on a micrometer scale in a tightly controlled manner.

Through this “nanoscale-sculpturing” process, metals such as aluminium, titanium, or zinc can permanently be joined with nearly all other materials, become water-repellent, or improve their biocompatibility. The potential spectrum of applications of these “super connections” is extremely broad, ranging from metalwork in industry right through to safer implants in medical technology. Their results have now been published in the prestigious journal Nanoscale Horizons of the Royal Society of Chemistry.

“We have now applied a technology to metals that was previously only known from semiconductors. To use this process in such a way is completely new,” said Dr. Jürgen Carstensen, co-author of the publication. In the process, the surface of a metal is converted into a semiconductor, which can be chemically etched and thereby specifically modified as desired. “As such, we have developed a process which – unlike other etching processes – does not damage the metals, and does not affect their stability,” emphasised Professor Rainer Adelung, head of the “Functional Nanomaterials” team at the Institute for Materials Science. Adelung stressed the importance of the discovery: “In this way, we can permanently connect metals which could previously not be directly joined, such as copper and aluminium.”

Continue Reading.

Syndicated from Mind Blowing Science!

Read more

APS Conferences for Undergraduate Women in Physics

APS Conferences for Undergraduate Women in Physics:



Deadline opens September 2016 and closes October 14, 2016 at 11:59 p.m. EDT

The 2017 conferences will be held Friday, January 13 through Sunday afternoon, January 15, 2017.

  • Harvard University
  • McMaster University
  • Montana State University
  • Princeton University
  • Rice University
  • University of California Los Angeles
  • University of Colorado Boulder
  • University of Wisconsin
  • Virginia Tech
  • Wayne State University

The APS CUWiP goal is to help undergraduate women continue in physics by providing them with the opportunity to experience a professional conference, information about graduate school and professions in physics, and access to other women in physics of all ages with whom they can share experiences, advice, and ideas.

A typical program will include research talks by faculty, panel discussions about graduate school and careers in physics, presentations and discussions about women in physics, laboratory tours, student research talks, a student poster session, and several meals during which presenters and students interact with each other.

Travel Information

Food and accommodations are provided by the conferences. You should contact your physics department to determine whether they can support the cost of your travel to and from the conference. The person to contact would normally be the chair of the department or a student services officer; if you are unsure who to contact, ask one of your professors or mentors for advice. Some travel support is available to students whose home institution is unable to provide full funding for travel.

CUWiP Sites

Before proceeding to the application page, please review the map and the list of conference sites to determine the appropriate site to apply to. This will normally be the site to which you will be geographically closest during the conference. States with an asterisk are available for more than one site. If you will be in one of these states during the conference weekend, you may apply to any of the associated sites; in general, choose the geographically closest or easiest to get to. Please note that students may occasionally be assigned to a site other than the closest in order to maximize the number of students who can attend the conferences.

@scientific-women @nasa-official @diversityinstem @gender-and-science @mindblowingscience do you all mind boosting? If interested people have questions on the conference or application process, I’d be happy to answer!!

Syndicated from Mind Blowing Science!

Read more

In New Paper, Physicists Say WTC Evidence Overwhelmingly Points to Controlled Demolition

In New Paper, Physicists Say WTC Evidence Overwhelmingly Points to Controlled Demolition:

On September 11, 2001, the world witnessed the total collapse of three large steel-framed high-rises. Since then, scientists and engineers have been working to understand why and how these unprecedented structural failures occurred.

science news

Read more

How an Inventor You’ve Probably Never Heard of Shaped the Modern World

How an Inventor You’ve Probably Never Heard of Shaped the Modern World:

Many of the inventors who fueled the digital revolution have become household names. And rightfully so. Innovators such as Steve Jobs, Bill Gates, and Mark Zuckerberg all contributed mightily to the technologies that have transformed our daily lives and society.

If you’re not an engineer, however, you have probably never heard of the brilliant inventor Rudolf Kálmán, a Budapest-born engineer and mathematician who died on July 2 in Gainesville, Florida, at age 86. His fundamental contribution, an algorithm called the Kalman filter, made possible many essential technological achievements of the last 50 years. These include aerospace systems such as the computers that landed Apollo astronauts on the moon, robotic vehicles that explore our world from the deep sea to the outer planets, and nearly any endeavor that needs to estimate the state of the world from noisy data. Someone once described the entire GPS system—an Earth-girdling constellation of satellites, ground stations, and computers as “one enormous Kalman filter.”

Within his professional community, Kálmán was well known and highly admired, the recipient of numerous awards and honors. In 2009 President Obama awarded him the National Medal of Science. If you have studied any form of robotics, control, or aerospace engineering in the past four decades, then Kálmán’s eponymous filter was as fundamental to your work as the Pythagorean theorem is to high schoolers preparing for the SAT.

Continue Reading.

Syndicated from Mind Blowing Science!

Read more

Team tricks solid into acting as liquid

Team tricks solid into acting as liquid:

Two scientists at the University of Central Florida have discovered how to get a solid material to act like a liquid without actually turning it into liquid, potentially opening a new world of possibilities for the electronic, optics and computing industries.

When chemistry graduate student Demetrius A. Vazquez-Molina took COF-5, a nano sponge-like, non-flammable manmade material and pressed it into pellets the size of a pinkie nail, he noticed something odd when he looked at its X-ray diffraction pattern. The material’s internal crystal structure arranged in a strange pattern. He took the lab results to his chemistry professor Fernando Uribe-Romo, who suggested he turn the pellets on their side and run the X-ray analysis again.

The result: The crystal structures within the material fell into precise patterns that allow for lithium ions to flow easily – like in a liquid.

The findings, published in the Journal of the American Chemical Society earlier this summer, are significant because a liquid is necessary for some electronics and other energy uses. But using current liquid materials sometimes is problematic.

For example, take lithium-ion batteries. They are among the best batteries on the market, charging everything from phones to hover boards. But they tend to be big and bulky because a liquid must be used within the battery to transfer lithium ions from one side of the battery to the other. This process stores and disperses energy. That reaction creates heat, which has resulted in cell phones exploding, hover boards bursting into flames, and even the grounding of some airplanes a few years ago that relied on lithium batteries for some of its functions.

But if a nontoxic solid could be used instead of a flammable liquid, industries could really change, Uribe-Romo said.

“We need to do a lot more testing, but this has a lot of promise,” he said. “If we could eliminate the need for liquid and use another material that was not flammable, would require less space and less packaging, that could really change things. That would mean less weight and potentially smaller batteries.”

Smaller, nontoxic and nonflammable materials could also mean smaller electronics and the ability to speed up the transfer of information via optics. And that could mean innovations to communication devices, computing power and even energy storage.

“This is really exciting for me,” said Vazquez-Molina who was a pre-med student before taking one of Uribe-Romo’s classes. “I liked chemistry, but until Professor Romo’s class I was getting bored. In his class I learned how to break all the (chemistry) rules. I really fell in love with chemistry then, because it is so intellectually stimulating.”

Uribe-Romo has his high school teacher in Mexico to thank for his passion for chemistry. After finishing his bachelor’s degree at Instituto Tecnológico y de Estudios Superiores de Monterreyin Mexico, Uribe-Romo earned a Ph.D. at the University of California at Los Angeles. He was a postdoctoral associate at Cornell University before joining UCF as an assistant professor in 2013.

The findings were pursued by a team lead by Uribe-Romo in collaboration with scientists at UCLA’s Department of Chemistry and Biochemistry. It’s a partnership the team is pursuing to see if COF-5 is indeed the material that could revolutionize battery and mobile device industries.

Syndicated from Mind Blowing Science!

Read more

sciteachers: cosmicfunnies: The finale of hot objects month…



The finale of hot objects month ends with something spectacular!

This week’s entry: Absolute Hot


Syndicated from Mind Blowing Science!

Read more

Why the Universe Needs More Black and Latino Astronomers

Why the Universe Needs More Black and Latino Astronomers:

Alton Sterling. Philando Castile. Pedro Villanueva. Anthony Nuñez.

These four names—all recent black and Latino victims of police violence—stare out at a college classroom full of budding astronomers. Written above them on the chalkboard is the now-familiar rallying call “Black Lives Matter.” It’s a Friday morning in July, and John Johnson, a black astronomer at the Harvard-Smithsonian Center for Astrophysics, has written these words as part of the day’s agenda. Later this afternoon, they’ll serve as a launching point for a discussion about these specific killings and the implications of systemic racism.

It’s something you might expect in an African American history class, or maybe a class on social justice. But this is a summer astronomy internship. Most astronomy internships are about parsing through tedious telescope data, battling with an arcane computer language in a basement, or making a poster to present at a conference: skills meant to help you get into grad school. The point of this class, which is made up entirely of African-American and Latino college students, is something very different.

The Banneker Institute is an ambitious new program meant to increase the number of black and Latino astronomers in the field—and to ensure that they are equipped to grapple with the social forces they will face in their careers. Undergraduates from all over the country apply to the Institute, which pays for them to live and work at Harvard for the summer. During the program, they alternate between specific research projects, general analysis techniques, and social justice activism—hence the names on the chalkboard.

Johnson, who studies extrasolar planets and is pioneering new ways to find them, started the program two years ago as a way to open up a historically rarefied, white, male enterprise. In 2013, Johnson left a professorship at Caltech to move to Harvard, citing Caltech’s lackluster commitment to diversity.

His own interest in the topic, he says, came out of the same basic curiosity that drives his research. “I’m really curious about how planets form,” says Johnson, whose research has helped astronomers revise their attitudes about planets around dwarf stars, which are now considered some of the best places to search for life. “The other thing I want to know the answer to is: Where are all the black folks? Because the further I went in my career, the fewer and fewer black people I saw.”

When he looked up the diversity statistics, Johnson became even more convinced: first that a problem existed, and then that something needed to be done about it. Not just for the sake of fairness, but for the advancement of the field.

Continue Reading.

Syndicated from Mind Blowing Science!

Read more

Genetically Modified Bacteria Conduct Electricity, Ushering in New Era of Green Electronics

Genetically Modified Bacteria Conduct Electricity, Ushering in New Era of Green Electronics:

Researchers at the University of Massachusetts at Amherst have genetically modified common soil bacteria to produce nanowires capable of conducting electricity at a level that surprised even the scientists themselves. After years of skepticism that this was even theoretically possible, the practical demonstration could lead to a new generation of “green” electronics in which nanowires could be produced in plant waste, without the need for toxic chemicals.

The research, which was supported by the Office of Naval Research (ONR), goes back to a series of papers that Derek Lovley, a professor at UM Amherst, published back in 2011. Lovely overcame skeptics who claimed it was impossible for soil bacteria to conduct electricity. Brushing aside computer models indicating that it was impossible to make the bacteria into electrically conductive nanowires, Lovley demonstrated through experiments that it was indeed possible.

“Research like Dr. Lovley’s could lead to the development of new electronic materials to meet the increasing demand for smaller, more powerful computing devices,” said Linda Chrisey, a program officer in ONR’s Warfighter Performance Department, in a press release. “Being able to produce extremely thin wires with sustainable materials has enormous potential application as components of electronic devices such as sensors, transistors and capacitors.”

The bacteria that Lovley has used in his experiments are called Geobacters; they possess nanoscale protein filaments extending outward from their bodies. These protein filaments are the key to the bacteria’s growth, as they allow it to make electrical connections to the iron oxide contained in the soil where it lives. While these connections allow the Geobacter to survive, it was believed that they could never be made to conduct electricity to the extent that it would ever be useful for human interests, namely electronics.

Continue Reading.

Syndicated from Mind Blowing Science!

Read more